Theorem 1 (Quadratic Formula) \[ x=\frac{-b\pm\sqrt{b^2-4ac} }{2a} \]
Proof. by \((a+b)^2=a^2+2ab+b^2\) \[ \begin{align*} &ax^2+bx+c=0 \ (a \neq 0) \\ &x^2+\frac{b}{a}x+\frac{c}{a}=0\\&(x+\frac{b}{2a})^2=-\frac{c}{a}+\frac{b^2}{4a^2}\\ &(x+\frac{b}{2a})^2=\frac{-4ac+b^2}{4a^2}\\ &x+\frac{b}{2a}=\pm\sqrt{\frac{b^2-4ac}{4a^2}}\\ &x=\pm\sqrt{\frac{b^2-4ac}{4a^2}}-\frac{b}{2a}\\ &x=\pm\frac{\sqrt{b^2-4ac}}{2a}-\frac{b}{2a}\\ &x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} \end{align*} \]
Definition 1 (Metric Space) A metric space is a set \(M\)with a function \(d: M \times M \to \mathbb{R}\) such that:
- \(d(x, y) \geq 0\)(Non-negativity)
- \(d(x, y) = 0\) if and only if \(x = y\)
- \(d(x, y) = d(y, x)\) (Symmetry)
- \(d(x, z) \leq d(x, y) + d(y, z)\) (Triangle inequality)
Definition 2 (The limit of a sequence) Suppose \(a_n\) is a convergent sequence, and \(L \in \mathbb{R}\) is the limit
\[ \forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, |a_n-L| \lt \epsilon \]
Note: the order of the quantifier is \(\forall\), \(\exists\), \(\forall\)
asd
H1
H2
H3
H4
H5
H6
- List
- List
- List
- List
- List
- List
- List
- List
- List
- First
- Second
- First
- First
- First
- Third
- Forth
What is JavaScript
?
console.log("Hello")
Fundamental Theorem of Calculus
\[ \int_a^b f'(x) \, dx = f(b) - f(a) \]
Thm: Multiple Lines Theorem
\[ \begin{align*} &ax^2+bx+c = 0 \\ &x = \frac{-b\pm\sqrt{b^2-4ac}}{2a} \end{align*} \tag{1}\]
This is a callout
Theorem 2 This is a theorem example for testing reference
Quote:
Nested Quote:
Nested Quote:
bold
italic
bold italic
https://quarto.org/docs/get-started/
 Testing/image.png)
A\B | B1 | B2 |
---|---|---|
A1 | A1 x B1 | A1 x B2 |
A2 | A2 x B1 | A2 x B2 |